Exercice 1 :
Un artisan a un bénéfice net b(x) qui dépend du nombre x de pièces vendues.
1°) Etudier les variations de b(x) sur l’intervalle [0 ; 100]
2°) En déduire le nombre de pièce que l’artisan doit fabriquer pour obtenir un bénéfice maximum. Et calculer ce bénéfice maximum.
3°) Au cas où le nombre de pièces commandées donc fabriqué serait un nombre aléatoire entre 10 et 100, calculer le bénéfice moyen par la formule suivante :
Exercice 2 :
Le même artisan suppose que son bénéfice est toujours une fonction polynomiale de degré 3. Il connait son bénéfice pour quatre valeur de x : b(0) = – 130, b(2) = -66, b(4) = 374 et b(10) = 3710.
Calculer la fonction polynomiale de degré 3
Exercice 3 :
Le poids d’un animal (en Kg) varie au début de leur vie et passe par un minimum du à une déshydratation dans les premiers jours.
Au temps t = 0 jour un animal pèse 42 Kg
Au temps t = 2 jours il pèse 40 kg
Au temps t = 10 jours il pèse 57 Kg
Au temps t = 14 jours il pèse 64,75 Kg
On estime que ce poids suit une fonction polynomiale de degré 3 jusqu’au quinzième jour.
1°) Calculer cette fonction
2°) Déterminer la date et le poids minimum.